|
|
'use strict';
const { collectStylesheet, computeStyle } = require('../lib/style.js'); const { pathElems } = require('./_collections.js'); const { path2js, js2path } = require('./_path.js'); const { applyTransforms } = require('./_applyTransforms.js'); const { cleanupOutData } = require('../lib/svgo/tools');
exports.name = 'convertPathData'; exports.type = 'visitor'; exports.active = true; exports.description = 'optimizes path data: writes in shorter form, applies transformations';
exports.params = { applyTransforms: true, applyTransformsStroked: true, makeArcs: { threshold: 2.5, // coefficient of rounding error
tolerance: 0.5, // percentage of radius
}, straightCurves: true, lineShorthands: true, curveSmoothShorthands: true, floatPrecision: 3, transformPrecision: 5, removeUseless: true, collapseRepeated: true, utilizeAbsolute: true, leadingZero: true, negativeExtraSpace: true, noSpaceAfterFlags: false, // a20 60 45 0 1 30 20 → a20 60 45 0130 20
forceAbsolutePath: false, };
let roundData; let precision; let error; let arcThreshold; let arcTolerance;
/** * Convert absolute Path to relative, * collapse repeated instructions, * detect and convert Lineto shorthands, * remove useless instructions like "l0,0", * trim useless delimiters and leading zeros, * decrease accuracy of floating-point numbers. * * @see https://www.w3.org/TR/SVG11/paths.html#PathData
* * @param {Object} item current iteration item * @param {Object} params plugin params * @return {Boolean} if false, item will be filtered out * * @author Kir Belevich */ exports.fn = (root, params) => { const stylesheet = collectStylesheet(root); return { element: { enter: (node) => { if (pathElems.includes(node.name) && node.attributes.d != null) { const computedStyle = computeStyle(stylesheet, node); precision = params.floatPrecision; error = precision !== false ? +Math.pow(0.1, precision).toFixed(precision) : 1e-2; roundData = precision > 0 && precision < 20 ? strongRound : round; if (params.makeArcs) { arcThreshold = params.makeArcs.threshold; arcTolerance = params.makeArcs.tolerance; } const hasMarkerMid = computedStyle['marker-mid'] != null;
const maybeHasStroke = computedStyle.stroke && (computedStyle.stroke.type === 'dynamic' || computedStyle.stroke.value !== 'none'); const maybeHasLinecap = computedStyle['stroke-linecap'] && (computedStyle['stroke-linecap'].type === 'dynamic' || computedStyle['stroke-linecap'].value !== 'butt'); const maybeHasStrokeAndLinecap = maybeHasStroke && maybeHasLinecap;
var data = path2js(node);
// TODO: get rid of functions returns
if (data.length) { if (params.applyTransforms) { applyTransforms(node, data, params); }
convertToRelative(data);
data = filters(data, params, { maybeHasStrokeAndLinecap, hasMarkerMid, });
if (params.utilizeAbsolute) { data = convertToMixed(data, params); }
js2path(node, data, params); } } }, }, }; };
/** * Convert absolute path data coordinates to relative. * * @param {Array} path input path data * @param {Object} params plugin params * @return {Array} output path data */ const convertToRelative = (pathData) => { let start = [0, 0]; let cursor = [0, 0]; let prevCoords = [0, 0];
for (let i = 0; i < pathData.length; i += 1) { const pathItem = pathData[i]; let { command, args } = pathItem;
// moveto (x y)
if (command === 'm') { // update start and cursor
cursor[0] += args[0]; cursor[1] += args[1]; start[0] = cursor[0]; start[1] = cursor[1]; } if (command === 'M') { // M → m
// skip first moveto
if (i !== 0) { command = 'm'; } args[0] -= cursor[0]; args[1] -= cursor[1]; // update start and cursor
cursor[0] += args[0]; cursor[1] += args[1]; start[0] = cursor[0]; start[1] = cursor[1]; }
// lineto (x y)
if (command === 'l') { cursor[0] += args[0]; cursor[1] += args[1]; } if (command === 'L') { // L → l
command = 'l'; args[0] -= cursor[0]; args[1] -= cursor[1]; cursor[0] += args[0]; cursor[1] += args[1]; }
// horizontal lineto (x)
if (command === 'h') { cursor[0] += args[0]; } if (command === 'H') { // H → h
command = 'h'; args[0] -= cursor[0]; cursor[0] += args[0]; }
// vertical lineto (y)
if (command === 'v') { cursor[1] += args[0]; } if (command === 'V') { // V → v
command = 'v'; args[0] -= cursor[1]; cursor[1] += args[0]; }
// curveto (x1 y1 x2 y2 x y)
if (command === 'c') { cursor[0] += args[4]; cursor[1] += args[5]; } if (command === 'C') { // C → c
command = 'c'; args[0] -= cursor[0]; args[1] -= cursor[1]; args[2] -= cursor[0]; args[3] -= cursor[1]; args[4] -= cursor[0]; args[5] -= cursor[1]; cursor[0] += args[4]; cursor[1] += args[5]; }
// smooth curveto (x2 y2 x y)
if (command === 's') { cursor[0] += args[2]; cursor[1] += args[3]; } if (command === 'S') { // S → s
command = 's'; args[0] -= cursor[0]; args[1] -= cursor[1]; args[2] -= cursor[0]; args[3] -= cursor[1]; cursor[0] += args[2]; cursor[1] += args[3]; }
// quadratic Bézier curveto (x1 y1 x y)
if (command === 'q') { cursor[0] += args[2]; cursor[1] += args[3]; } if (command === 'Q') { // Q → q
command = 'q'; args[0] -= cursor[0]; args[1] -= cursor[1]; args[2] -= cursor[0]; args[3] -= cursor[1]; cursor[0] += args[2]; cursor[1] += args[3]; }
// smooth quadratic Bézier curveto (x y)
if (command === 't') { cursor[0] += args[0]; cursor[1] += args[1]; } if (command === 'T') { // T → t
command = 't'; args[0] -= cursor[0]; args[1] -= cursor[1]; cursor[0] += args[0]; cursor[1] += args[1]; }
// elliptical arc (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
if (command === 'a') { cursor[0] += args[5]; cursor[1] += args[6]; } if (command === 'A') { // A → a
command = 'a'; args[5] -= cursor[0]; args[6] -= cursor[1]; cursor[0] += args[5]; cursor[1] += args[6]; }
// closepath
if (command === 'Z' || command === 'z') { // reset cursor
cursor[0] = start[0]; cursor[1] = start[1]; }
pathItem.command = command; pathItem.args = args; // store absolute coordinates for later use
// base should preserve reference from other element
pathItem.base = prevCoords; pathItem.coords = [cursor[0], cursor[1]]; prevCoords = pathItem.coords; }
return pathData; };
/** * Main filters loop. * * @param {Array} path input path data * @param {Object} params plugin params * @return {Array} output path data */ function filters(path, params, { maybeHasStrokeAndLinecap, hasMarkerMid }) { var stringify = data2Path.bind(null, params), relSubpoint = [0, 0], pathBase = [0, 0], prev = {};
path = path.filter(function (item, index, path) { let command = item.command; let data = item.args; let next = path[index + 1];
if (command !== 'Z' && command !== 'z') { var sdata = data, circle;
if (command === 's') { sdata = [0, 0].concat(data);
if (command === 'c' || command === 's') { var pdata = prev.args, n = pdata.length;
// (-x, -y) of the prev tangent point relative to the current point
sdata[0] = pdata[n - 2] - pdata[n - 4]; sdata[1] = pdata[n - 1] - pdata[n - 3]; } }
// convert curves to arcs if possible
if ( params.makeArcs && (command == 'c' || command == 's') && isConvex(sdata) && (circle = findCircle(sdata)) ) { var r = roundData([circle.radius])[0], angle = findArcAngle(sdata, circle), sweep = sdata[5] * sdata[0] - sdata[4] * sdata[1] > 0 ? 1 : 0, arc = { command: 'a', args: [r, r, 0, 0, sweep, sdata[4], sdata[5]], coords: item.coords.slice(), base: item.base, }, output = [arc], // relative coordinates to adjust the found circle
relCenter = [ circle.center[0] - sdata[4], circle.center[1] - sdata[5], ], relCircle = { center: relCenter, radius: circle.radius }, arcCurves = [item], hasPrev = 0, suffix = '', nextLonghand;
if ( (prev.command == 'c' && isConvex(prev.args) && isArcPrev(prev.args, circle)) || (prev.command == 'a' && prev.sdata && isArcPrev(prev.sdata, circle)) ) { arcCurves.unshift(prev); arc.base = prev.base; arc.args[5] = arc.coords[0] - arc.base[0]; arc.args[6] = arc.coords[1] - arc.base[1]; var prevData = prev.command == 'a' ? prev.sdata : prev.args; var prevAngle = findArcAngle(prevData, { center: [ prevData[4] + circle.center[0], prevData[5] + circle.center[1], ], radius: circle.radius, }); angle += prevAngle; if (angle > Math.PI) arc.args[3] = 1; hasPrev = 1; }
// check if next curves are fitting the arc
for ( var j = index; (next = path[++j]) && ~'cs'.indexOf(next.command);
) { var nextData = next.args; if (next.command == 's') { nextLonghand = makeLonghand( { command: 's', args: next.args.slice() }, path[j - 1].args ); nextData = nextLonghand.args; nextLonghand.args = nextData.slice(0, 2); suffix = stringify([nextLonghand]); } if (isConvex(nextData) && isArc(nextData, relCircle)) { angle += findArcAngle(nextData, relCircle); if (angle - 2 * Math.PI > 1e-3) break; // more than 360°
if (angle > Math.PI) arc.args[3] = 1; arcCurves.push(next); if (2 * Math.PI - angle > 1e-3) { // less than 360°
arc.coords = next.coords; arc.args[5] = arc.coords[0] - arc.base[0]; arc.args[6] = arc.coords[1] - arc.base[1]; } else { // full circle, make a half-circle arc and add a second one
arc.args[5] = 2 * (relCircle.center[0] - nextData[4]); arc.args[6] = 2 * (relCircle.center[1] - nextData[5]); arc.coords = [ arc.base[0] + arc.args[5], arc.base[1] + arc.args[6], ]; arc = { command: 'a', args: [ r, r, 0, 0, sweep, next.coords[0] - arc.coords[0], next.coords[1] - arc.coords[1], ], coords: next.coords, base: arc.coords, }; output.push(arc); j++; break; } relCenter[0] -= nextData[4]; relCenter[1] -= nextData[5]; } else break; }
if ((stringify(output) + suffix).length < stringify(arcCurves).length) { if (path[j] && path[j].command == 's') { makeLonghand(path[j], path[j - 1].args); } if (hasPrev) { var prevArc = output.shift(); roundData(prevArc.args); relSubpoint[0] += prevArc.args[5] - prev.args[prev.args.length - 2]; relSubpoint[1] += prevArc.args[6] - prev.args[prev.args.length - 1]; prev.command = 'a'; prev.args = prevArc.args; item.base = prev.coords = prevArc.coords; } arc = output.shift(); if (arcCurves.length == 1) { item.sdata = sdata.slice(); // preserve curve data for future checks
} else if (arcCurves.length - 1 - hasPrev > 0) { // filter out consumed next items
path.splice.apply( path, [index + 1, arcCurves.length - 1 - hasPrev].concat(output) ); } if (!arc) return false; command = 'a'; data = arc.args; item.coords = arc.coords; } }
// Rounding relative coordinates, taking in account accummulating error
// to get closer to absolute coordinates. Sum of rounded value remains same:
// l .25 3 .25 2 .25 3 .25 2 -> l .3 3 .2 2 .3 3 .2 2
if (precision !== false) { if ( command === 'm' || command === 'l' || command === 't' || command === 'q' || command === 's' || command === 'c' ) { for (var i = data.length; i--; ) { data[i] += item.base[i % 2] - relSubpoint[i % 2]; } } else if (command == 'h') { data[0] += item.base[0] - relSubpoint[0]; } else if (command == 'v') { data[0] += item.base[1] - relSubpoint[1]; } else if (command == 'a') { data[5] += item.base[0] - relSubpoint[0]; data[6] += item.base[1] - relSubpoint[1]; } roundData(data);
if (command == 'h') relSubpoint[0] += data[0]; else if (command == 'v') relSubpoint[1] += data[0]; else { relSubpoint[0] += data[data.length - 2]; relSubpoint[1] += data[data.length - 1]; } roundData(relSubpoint);
if (command === 'M' || command === 'm') { pathBase[0] = relSubpoint[0]; pathBase[1] = relSubpoint[1]; } }
// convert straight curves into lines segments
if (params.straightCurves) { if ( (command === 'c' && isCurveStraightLine(data)) || (command === 's' && isCurveStraightLine(sdata)) ) { if (next && next.command == 's') makeLonghand(next, data); // fix up next curve
command = 'l'; data = data.slice(-2); } else if (command === 'q' && isCurveStraightLine(data)) { if (next && next.command == 't') makeLonghand(next, data); // fix up next curve
command = 'l'; data = data.slice(-2); } else if ( command === 't' && prev.command !== 'q' && prev.command !== 't' ) { command = 'l'; data = data.slice(-2); } else if (command === 'a' && (data[0] === 0 || data[1] === 0)) { command = 'l'; data = data.slice(-2); } }
// horizontal and vertical line shorthands
// l 50 0 → h 50
// l 0 50 → v 50
if (params.lineShorthands && command === 'l') { if (data[1] === 0) { command = 'h'; data.pop(); } else if (data[0] === 0) { command = 'v'; data.shift(); } }
// collapse repeated commands
// h 20 h 30 -> h 50
if ( params.collapseRepeated && hasMarkerMid === false && (command === 'm' || command === 'h' || command === 'v') && prev.command && command == prev.command.toLowerCase() && ((command != 'h' && command != 'v') || prev.args[0] >= 0 == data[0] >= 0) ) { prev.args[0] += data[0]; if (command != 'h' && command != 'v') { prev.args[1] += data[1]; } prev.coords = item.coords; path[index] = prev; return false; }
// convert curves into smooth shorthands
if (params.curveSmoothShorthands && prev.command) { // curveto
if (command === 'c') { // c + c → c + s
if ( prev.command === 'c' && data[0] === -(prev.args[2] - prev.args[4]) && data[1] === -(prev.args[3] - prev.args[5]) ) { command = 's'; data = data.slice(2); }
// s + c → s + s
else if ( prev.command === 's' && data[0] === -(prev.args[0] - prev.args[2]) && data[1] === -(prev.args[1] - prev.args[3]) ) { command = 's'; data = data.slice(2); }
// [^cs] + c → [^cs] + s
else if ( prev.command !== 'c' && prev.command !== 's' && data[0] === 0 && data[1] === 0 ) { command = 's'; data = data.slice(2); } }
// quadratic Bézier curveto
else if (command === 'q') { // q + q → q + t
if ( prev.command === 'q' && data[0] === prev.args[2] - prev.args[0] && data[1] === prev.args[3] - prev.args[1] ) { command = 't'; data = data.slice(2); }
// t + q → t + t
else if ( prev.command === 't' && data[2] === prev.args[0] && data[3] === prev.args[1] ) { command = 't'; data = data.slice(2); } } }
// remove useless non-first path segments
if (params.removeUseless && !maybeHasStrokeAndLinecap) { // l 0,0 / h 0 / v 0 / q 0,0 0,0 / t 0,0 / c 0,0 0,0 0,0 / s 0,0 0,0
if ( (command === 'l' || command === 'h' || command === 'v' || command === 'q' || command === 't' || command === 'c' || command === 's') && data.every(function (i) { return i === 0; }) ) { path[index] = prev; return false; }
// a 25,25 -30 0,1 0,0
if (command === 'a' && data[5] === 0 && data[6] === 0) { path[index] = prev; return false; } }
item.command = command; item.args = data;
prev = item; } else { // z resets coordinates
relSubpoint[0] = pathBase[0]; relSubpoint[1] = pathBase[1]; if (prev.command === 'Z' || prev.command === 'z') return false; prev = item; }
return true; });
return path; }
/** * Writes data in shortest form using absolute or relative coordinates. * * @param {Array} data input path data * @return {Boolean} output */ function convertToMixed(path, params) { var prev = path[0];
path = path.filter(function (item, index) { if (index == 0) return true; if (item.command === 'Z' || item.command === 'z') { prev = item; return true; }
var command = item.command, data = item.args, adata = data.slice();
if ( command === 'm' || command === 'l' || command === 't' || command === 'q' || command === 's' || command === 'c' ) { for (var i = adata.length; i--; ) { adata[i] += item.base[i % 2]; } } else if (command == 'h') { adata[0] += item.base[0]; } else if (command == 'v') { adata[0] += item.base[1]; } else if (command == 'a') { adata[5] += item.base[0]; adata[6] += item.base[1]; }
roundData(adata);
var absoluteDataStr = cleanupOutData(adata, params), relativeDataStr = cleanupOutData(data, params);
// Convert to absolute coordinates if it's shorter or forceAbsolutePath is true.
// v-20 -> V0
// Don't convert if it fits following previous command.
// l20 30-10-50 instead of l20 30L20 30
if ( params.forceAbsolutePath || (absoluteDataStr.length < relativeDataStr.length && !( params.negativeExtraSpace && command == prev.command && prev.command.charCodeAt(0) > 96 && absoluteDataStr.length == relativeDataStr.length - 1 && (data[0] < 0 || (/^0\./.test(data[0]) && prev.args[prev.args.length - 1] % 1)) )) ) { item.command = command.toUpperCase(); item.args = adata; }
prev = item;
return true; });
return path; }
/** * Checks if curve is convex. Control points of such a curve must form * a convex quadrilateral with diagonals crosspoint inside of it. * * @param {Array} data input path data * @return {Boolean} output */ function isConvex(data) { var center = getIntersection([ 0, 0, data[2], data[3], data[0], data[1], data[4], data[5], ]);
return ( center && data[2] < center[0] == center[0] < 0 && data[3] < center[1] == center[1] < 0 && data[4] < center[0] == center[0] < data[0] && data[5] < center[1] == center[1] < data[1] ); }
/** * Computes lines equations by two points and returns their intersection point. * * @param {Array} coords 8 numbers for 4 pairs of coordinates (x,y) * @return {Array|undefined} output coordinate of lines' crosspoint */ function getIntersection(coords) { // Prev line equation parameters.
var a1 = coords[1] - coords[3], // y1 - y2
b1 = coords[2] - coords[0], // x2 - x1
c1 = coords[0] * coords[3] - coords[2] * coords[1], // x1 * y2 - x2 * y1
// Next line equation parameters
a2 = coords[5] - coords[7], // y1 - y2
b2 = coords[6] - coords[4], // x2 - x1
c2 = coords[4] * coords[7] - coords[5] * coords[6], // x1 * y2 - x2 * y1
denom = a1 * b2 - a2 * b1;
if (!denom) return; // parallel lines havn't an intersection
var cross = [(b1 * c2 - b2 * c1) / denom, (a1 * c2 - a2 * c1) / -denom]; if ( !isNaN(cross[0]) && !isNaN(cross[1]) && isFinite(cross[0]) && isFinite(cross[1]) ) { return cross; } }
/** * Decrease accuracy of floating-point numbers * in path data keeping a specified number of decimals. * Smart rounds values like 2.3491 to 2.35 instead of 2.349. * Doesn't apply "smartness" if the number precision fits already. * * @param {Array} data input data array * @return {Array} output data array */ function strongRound(data) { for (var i = data.length; i-- > 0; ) { if (data[i].toFixed(precision) != data[i]) { var rounded = +data[i].toFixed(precision - 1); data[i] = +Math.abs(rounded - data[i]).toFixed(precision + 1) >= error ? +data[i].toFixed(precision) : rounded; } } return data; }
/** * Simple rounding function if precision is 0. * * @param {Array} data input data array * @return {Array} output data array */ function round(data) { for (var i = data.length; i-- > 0; ) { data[i] = Math.round(data[i]); } return data; }
/** * Checks if a curve is a straight line by measuring distance * from middle points to the line formed by end points. * * @param {Array} xs array of curve points x-coordinates * @param {Array} ys array of curve points y-coordinates * @return {Boolean} */
function isCurveStraightLine(data) { // Get line equation a·x + b·y + c = 0 coefficients a, b (c = 0) by start and end points.
var i = data.length - 2, a = -data[i + 1], // y1 − y2 (y1 = 0)
b = data[i], // x2 − x1 (x1 = 0)
d = 1 / (a * a + b * b); // same part for all points
if (i <= 1 || !isFinite(d)) return false; // curve that ends at start point isn't the case
// Distance from point (x0, y0) to the line is sqrt((c − a·x0 − b·y0)² / (a² + b²))
while ((i -= 2) >= 0) { if (Math.sqrt(Math.pow(a * data[i] + b * data[i + 1], 2) * d) > error) return false; }
return true; }
/** * Converts next curve from shorthand to full form using the current curve data. * * @param {Object} item curve to convert * @param {Array} data current curve data */
function makeLonghand(item, data) { switch (item.command) { case 's': item.command = 'c'; break; case 't': item.command = 'q'; break; } item.args.unshift( data[data.length - 2] - data[data.length - 4], data[data.length - 1] - data[data.length - 3] ); return item; }
/** * Returns distance between two points * * @param {Array} point1 first point coordinates * @param {Array} point2 second point coordinates * @return {Number} distance */
function getDistance(point1, point2) { return Math.hypot(point1[0] - point2[0], point1[1] - point2[1]); }
/** * Returns coordinates of the curve point corresponding to the certain t * a·(1 - t)³·p1 + b·(1 - t)²·t·p2 + c·(1 - t)·t²·p3 + d·t³·p4, * where pN are control points and p1 is zero due to relative coordinates. * * @param {Array} curve array of curve points coordinates * @param {Number} t parametric position from 0 to 1 * @return {Array} Point coordinates */
function getCubicBezierPoint(curve, t) { var sqrT = t * t, cubT = sqrT * t, mt = 1 - t, sqrMt = mt * mt;
return [ 3 * sqrMt * t * curve[0] + 3 * mt * sqrT * curve[2] + cubT * curve[4], 3 * sqrMt * t * curve[1] + 3 * mt * sqrT * curve[3] + cubT * curve[5], ]; }
/** * Finds circle by 3 points of the curve and checks if the curve fits the found circle. * * @param {Array} curve * @return {Object|undefined} circle */
function findCircle(curve) { var midPoint = getCubicBezierPoint(curve, 1 / 2), m1 = [midPoint[0] / 2, midPoint[1] / 2], m2 = [(midPoint[0] + curve[4]) / 2, (midPoint[1] + curve[5]) / 2], center = getIntersection([ m1[0], m1[1], m1[0] + m1[1], m1[1] - m1[0], m2[0], m2[1], m2[0] + (m2[1] - midPoint[1]), m2[1] - (m2[0] - midPoint[0]), ]), radius = center && getDistance([0, 0], center), tolerance = Math.min(arcThreshold * error, (arcTolerance * radius) / 100);
if ( center && radius < 1e15 && [1 / 4, 3 / 4].every(function (point) { return ( Math.abs( getDistance(getCubicBezierPoint(curve, point), center) - radius ) <= tolerance ); }) ) return { center: center, radius: radius }; }
/** * Checks if a curve fits the given circle. * * @param {Object} circle * @param {Array} curve * @return {Boolean} */
function isArc(curve, circle) { var tolerance = Math.min( arcThreshold * error, (arcTolerance * circle.radius) / 100 );
return [0, 1 / 4, 1 / 2, 3 / 4, 1].every(function (point) { return ( Math.abs( getDistance(getCubicBezierPoint(curve, point), circle.center) - circle.radius ) <= tolerance ); }); }
/** * Checks if a previous curve fits the given circle. * * @param {Object} circle * @param {Array} curve * @return {Boolean} */
function isArcPrev(curve, circle) { return isArc(curve, { center: [circle.center[0] + curve[4], circle.center[1] + curve[5]], radius: circle.radius, }); }
/** * Finds angle of a curve fitting the given arc.
* @param {Array} curve * @param {Object} relCircle * @return {Number} angle */
function findArcAngle(curve, relCircle) { var x1 = -relCircle.center[0], y1 = -relCircle.center[1], x2 = curve[4] - relCircle.center[0], y2 = curve[5] - relCircle.center[1];
return Math.acos( (x1 * x2 + y1 * y2) / Math.sqrt((x1 * x1 + y1 * y1) * (x2 * x2 + y2 * y2)) ); }
/** * Converts given path data to string. * * @param {Object} params * @param {Array} pathData * @return {String} */
function data2Path(params, pathData) { return pathData.reduce(function (pathString, item) { var strData = ''; if (item.args) { strData = cleanupOutData(roundData(item.args.slice()), params); } return pathString + item.command + strData; }, ''); }
|